Bayesian inference for the information gain model

نویسندگان

  • Sven Stringer
  • Denny Borsboom
  • Eric-Jan Wagenmakers
چکیده

One of the most popular paradigms to use for studying human reasoning involves the Wason card selection task. In this task, the participant is presented with four cards and a conditional rule (e.g., "If there is an A on one side of the card, there is always a 2 on the other side"). Participants are asked which cards should be turned to verify whether or not the rule holds. In this simple task, participants consistently provide answers that are incorrect according to formal logic. To account for these errors, several models have been proposed, one of the most prominent being the information gain model (Oaksford & Chater, Psychological Review, 101, 608-631, 1994). This model is based on the assumption that people independently select cards based on the expected information gain of turning a particular card. In this article, we present two estimation methods to fit the information gain model: a maximum likelihood procedure (programmed in R) and a bayesian procedure (programmed in WinBUGS). We compare the two procedures and illustrate the flexibility of the bayesian hierarchical procedure by applying it to data from a meta-analysis of the Wason task (Oaksford & Chater, Psychological Review, 101, 608-631, 1994). We also show that the goodness of fit of the information gain model can be assessed by inspecting the posterior predictives of the model. These bayesian procedures make it easy to apply the information gain model to empirical data. Supplemental materials may be downloaded along with this article from www.springerlink.com.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

A Disease Outbreak Prediction Model Using Bayesian Inference: A Case of Influenza

Introduction: One major problem in analyzing epidemic data is the lack of data and high dependency among the available data, which is due to the fact that the epidemic process is not directly observable. Methods: One method for epidemic data analysis to estimate the desired epidemic parameters, such as disease transmission rate and recovery rate, is data ...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Location Reparameterization and Default Priors for Statistical Analysis

This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...

متن کامل

Pseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours

When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2011